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ABSTRACT 

The precise assessment of local scour depth under pipelines is a complicated occurrence, and the definitive method for its calculation 

remains unclear. This work tackles the issue by using computational models to accurately predict scour depth with great reliability. A 

support vector machine (SVM) was used to forecast pipeline scour depth, using an extensive dataset. The results were juxtaposed with 

typical datasets and other prediction methodologies, including regression equations and Radial Basis Function Neural Networks 

(RBFNN). The comparison study indicates that the SVM surpasses conventional regression techniques and RBFNN, attaining a 

superior generalization capability with R² = 0.89, RMSE = 0.046, MAE = 0.32%, and δ = 9.9. Principal results indicate that the mean 

diameter of particles substantially affects scour depth, while flow discharge has no effect. Non-dimensional metrics, like the Shields 

parameter, are essential in assessing scour depth. These findings underscore the efficacy of SVM in precisely forecasting scour depth 

under pipelines, making it an indispensable instrument for hydraulic engineering applications. This paper introduces a unique 
contribution to scouring estimate approaches by using both dimensional and non-dimensional datasets, establishing a baseline for 

future research in this field. 

 

Keywords:  Local scour; Machine Learning approaches; Pipelines; Error analysis. 

 

I. INTRODUCTION 

Scour significantly contributes to the collapse of underwater pipelines. When pipelines encounter scour holes, they may experience 

self-burial, which affects their structural integrity. This phenomenon results from the intricacies of three-dimensional flow patterns 

and sediment movement at river or seabeds. The interaction between degraded bed surfaces and pipes intensifies scouring. Precisely 

determining underwater scour depth is a critical issue in hydraulic engineering. Extended free spans in pipelines may undergo resonant 

oscillations, resulting in settling and possible structural collapse (Chiew, 1991). Researchers, including Chao and Hennessy (1972), 
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Kjeldsen et al. (1973), and Moncada and Aguirre (1999), have used empirical and analytical formulae to determine equilibrium scour 

depth. Nevertheless, these equations often inadequately represent the actual scour process. Table 1 encapsulates these empirical 

formulae. 

Table 1: Empirical formulas for estimate pipeline scour depth 
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for H≥R and H-R = maximum scour depth, R=radius of pipe, H=distance 

from bed to pipe centre, Uo= average flow velocity. 
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D = pipe diameter, e = initial gap between pipe and undisturbed erodible 

bed; 

 

Figure 1 illustrates the flow conditions, pipe shape, and sediment characteristics. The factors influencing the equilibrium scour depth 

ds under the pipeline include flow conditions, over a bed of unaltered cohesionless material, as well as spherical sedimentation, as 

seen in Fig. 1. The broad connection representing scour depth is shown below (Moncada and Aguirre, 1999): 

           (1)         

In the above equation   is fluid density; and


s , ν are buoyant sediment density and fluid kinematic viscosity respectively. Q  is 

discharge, Y is flow depth & g is gravitational acceleration.  50d  is particle mean diameter; 0S  is slope of the energy line; D is the 

diameter of the pipe, & sd  is equilibrium scour depth. 

The six non-dimensional parameters may be derived by reducing nine variables from Equation (1) using the Buckingham theorem, 

selecting the fundamental variables of  , Q  and D.  
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Where 
*  is dimensionless Shields parameter relates with sediment transport;

50d

D
 = Characteristics of dimensionless soil, Rp= 



VD
 

is Reynolds number, 0S = energy slope and, (Froude number) F = 
gY

V
. 

 

Fig 1:  Local scour below pipeline in river crossing (Dey and Singh, 2008) 

 

In fully developed turbulent flow over a rough substrate, the inaccuracy related to the Reynolds number is insignificant and may 

therefore be ignored (Lim and Chiew, 2001; Melville, 1992). This criterion for the Reynolds number corresponds with the results of 

Moncada and Aguirre (1999) and Dey and Singh (2008). The integration of soft computing techniques with field data and regulated 

statistical laboratory procedures produces very reliable and meaningful findings for calculating hydraulic parameters. Soft computing 

methodologies, including Neural Networks (NN) and Support Vector Machines (SVM), have been extensively used to tackle diverse 

hydraulic issues. Researchers have utilized neural network-based methodologies (Trent et al., 1993; Liriano and Day, 2001; Kambekar 
and Deo, 2003; Azinfar et al., 2004; Azamathulla et al., 2005, 2006, 2008; Guven and Gunal, 2008a, b; Goel, 2008) to estimate 

downstream flow characteristics and scour around hydraulic structures using extensive field datasets. This research employs Artificial 

Neural Networks and Support Vector Machines to forecast scour depth under pipelines. Advanced soft computing techniques, 

including Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), have shown efficacy in 

addressing hydraulic engineering challenges (Azamathulla et al., 2005, 2008, 2010). This work introduces a prediction model for 

evaluating scour depth using the SVM methodology. The outcomes from the SVM model were then compared with those generated 

from a Radial Basis Function Neural Network (RBFNN) and traditional regression equations.  

 

II. METHODOLOGY 

Neural Network (NN) model development 

Artificial Neural Networks primarily consist of input, hidden, and output neurons, with each neuron functioning as an autonomous 

entity. The correlation between input and vector components provides a significant degree of strength flexibility based on its design. 

The neural network is trained to analyze data sets consisting of input-output pairs, yielding values for connection weights, biases, and 

centers. Training may need many epochs, when the whole dataset is presented to the network repeatedly until the cumulative total of 

squared errors attains a predetermined error threshold. The principles behind these trainings are described in the ASCE Working 
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Committee (2000). This research used a neural network toolbox inside the MATLAB program, using a generic feedforward 

architecture trained with radial basis functions (RBF). Of the 215 input-output pairings, about 75% (161 sets) were randomly selected 

for training, while the remaining 25% (54 sets) were used for testing. All patterns were adjusted to the range of (0.0, 1.0) using a 

Gaussian function prior to their application. The RBF network, including 5 inputs, 36 hidden neurons, and 1 output, was trained with 

varying diffusion values (α) ranging from 0 to 1. A value of 0.01 was selected since it produced optimal performance for the training 

data.  

 

SVM model development 

The Support Vector Machine (SVM), created by Vapnik in (1995), is increasingly favored for its appealing characteristics and 

potential empirical efficacy. Support Vector Machines (SVMs) were first designed for classification tasks, but they have now been 

adapted for regression issues (Vapnik 1998). An SVM constructs discrete hyperplanes across classes in the n-dimensional input space, 

maximizing the margins between the two data sets. This property enhances the applicability of SVM in comparison to ANN. The 

distance between two parallel hyperplanes is referred to as the margin, with one side of the separator pressed against each of the two 

datasets. The classifier mistake is mitigated by increasing the margins. In the event of regression development, the distinction lies in 

the SVR's attempt to fit a curve based on the kernel applied to the two data points of the hyperplane. This strategy may reduce the 

separation margins and calculation mistakes. 

Initially, Support Vector Machine was used just for classification in 1996; a subsequent version of SVM was introduced by Drucker et 

al. in 1997. This updated version encompasses all the principal attributes of the maximum margin approach, with a non-linear function 

transformed via linear learning machine mapping into a high-dimensional kernel-induced feature space. The system's capacity is 

quantified by a parameter that is independent of surface dimensionality.  SVM operates on the principles of generalization and 

optimization in bond regression. They depend on establishing a loss function that disregards mistakes within a certain proximity to the 

real value, referred to as the epsilon-intensive loss function. In SVR, the input x is transformed into an m-dimensional feature space by 

a nonlinear method, after which a linear model is established inside this feature space. The non-linear model represented in 

mathematical notation (inside the feature space) is denoted as f(x, w): 
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In this formula gj(x), j=1,…,n (nonlinear transformations), w= weight vector,  b= bias terms. Value of loss function L (y, f (x, w)) 

defines the accuracy of formula.  SVM regression is represented by Є (insensitive loss function) Vapnik (1998):  
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SVR shows linear regression in high-dimension feature space with ε insensitive loss and at the same time, tries to reduce model 

complexity by decreasing the value of ||w ||2. This can be achieved by using positive slack variables, ξi, ξi
*= 1,… ,m to measure the 

deviation of the training samples outside  the  ε -insensitive zone. So SVR minimize of the following function:  
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For optimization it is converted in dual problem and the solution of it are given below. 
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In above equation nsv= No. of SVs,  k (xi, x) = kernel function.  

The Lagrangian approach is used to resolve the aforementioned optimization, which resembles the optimization issue in the separable 

situation. The coefficients αi are found by solving the subsequent convex quadratic programming problem, and the kernel function is 

stated as follows: 
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The complexity of SVM models and their estimate accuracy rely on the optimal configuration of the meta-parameters C, ε, and kernel 

parameters (Smola & Schölkopf, 1998). Kernel functions are used to alter the dimensionality of the input space, hence enhancing the 

confidence in classification or regression tasks. Two prevalent kernel functions include the radial basis function (RBF):  
2

( , ) exp( )k x x x x      (8)        

polynomial function is. 

k(x,x’)-(xx’+1)p     (9)       

Where γ > 0 represents radial parameters and p denotes kernel-specific parameters; they are assigned main values and used throughout 

the training phase. Additional kernel functions have been developed for certain applications (Uestuen, et al. 2006). 
The Sequential Minimal Optimization (SMO) approach was introduced by Platt in 1999 to address the regression issue. It attains the 

maximum by repeatedly picking subsets of size 2 and optimizing the target function accordingly. The algorithm is straightforward and 

easy to implement; it may be resolved without using a quadratic optimizer. Shevade et al. (2000). The model development mostly 

comprises the SVM input and output data presented in equations 1 and 2. Seventy-five percent of the data (161 data sets) was used 

until optimal training performance was achieved, while the remaining twenty-five percent was exclusively employed for validating the 

SVM model in the MATLAB toolbox. 

 

Error analysis  

The SVM's training and testing sets were assessed using conventional statistical metrics, including the coefficient of determination 

(R²), root mean square error (RMSE), mean absolute error (MAE), and mean absolute deviation (δ). All models were evaluated and 

compared using these four error measures. Table 2 delineates the characteristics and variances identified in the gathered data. 
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Where it = target values of equilibrium scour depth (cm), while io = observed and  io = averaged observed values of equilibrium 

scour depth (cm),  N=  No. of data points.  

 

Table 2: Data variation 

Parameters Unit Data Range Mean Std Dev 

a)Range of different input–output parameters used for the estimation of  scour depth 

Flow discharge (Q) cm3/s 7-94.42 35.11 21.74 

Flow depth (Y) cm 3.8-28 13.43 6.21 

Particle mean diameter (d50) cm 0.234-0.7 0.437 0.144 

Diameter of the pipe (D) cm 0.48-7.6 1.92 1.61 

Equilibrium scour depth (ds) cm 0.02-11.3 4.75 2.39 

b)Range of different non-dimensional input–output  parameters used for the estimation of  scour depth 
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dimensionless Shields parameter (τ*) 0.038-0.70 0.23 0.17 

normalized flow depth (Y/D) 1.06-7 3.14 1.2 

pipeline diameter cross section of sediment size (D/d50) 3.28-145.8 38.17 31.41 

Froude number (Fr) 0.2-0.83 0.46 0.15 

Reynolds number Re  700 

- 9450 

3250 2174 

Non-dimensional equilibrium scour depth(ds/D) 0.008-1.66 1.04 0.32 

 

 

III. RESULT AND DISCUSSION 

This research aims to estimate scour depth underneath pipelines using Support Vector Machine (SVM) models and to evaluate their 

efficacy with Artificial Neural Networks (ANN) employing Radial Basis Function Neural Networks (RBFNN). The findings are 

analyzed with a focus on the precision and dependability of the predicted models, together with the understanding acquired about the 

factors affecting scour depth. Tables 3 and 4 provide the comparative analysis of the dimensional and non-dimensional performance of 

the SVM and ANN-RBF models. The comparison of SVM and ANN-RBF models revealed that SVM consistently surpassed ANN-

RBF in accuracy and error measures across both dimensional and non-dimensional datasets. The Support Vector Machine (SVM) 

attained a coefficient of determination (R²) of 0.866 in training and 0.741 in validation, demonstrating robust predictive efficacy. The 

Root Mean Square Error (RMSE) for Support Vector Machine (SVM) was 0.0895 during training and 0.0957 during validation, 

surpassing the Artificial Neural Network with Radial Basis Function (ANN-RBF), which recorded RMSE values of 0.0978 for 
training and 0.0998 for validation. The Mean Absolute Error (MAE) for Support Vector Machine (SVM) was markedly lower than 

that of Artificial Neural Network with Radial Basis Function (ANN-RBF), exhibiting MAE values of 1.279 (training) and 1.426 

(validation), in contrast to ANN-RBF's 1.933 (training) and 2.71 (validation). SVM demonstrated enhanced performance throughout 

training and validation. In contrast, ANN-RBF attained (training) and (validation). The RMSE values for SVM were very low (0.029 

for training and 0.046 for validation), but ANN-RBF exhibited more errors (0.008 for training and 0.073 for validation). The MAE 

values for SVM were 0.279 (training) and 0.320 (validation), much lower than ANN-RBF's 0.083 (training) and 0.071 (validation). 

These findings underscore SVM's superior generalization compared to ANN-RBF, establishing it as a more dependable instrument for 

forecasting pipeline scour depth. 

The sensitivity analysis of both dimensional and non-dimensional parameters revealed critical insights into the determinants of scour 

depth. The mean particle diameter was determined to be the most significant factor influencing scour depth. Flow discharge had little 

impact on scour depth, indicating its restricted influence on the scour process under the examined circumstances. The Shields 

parameter significantly influenced normalized scour depth, underscoring its essential function in sediment movement. The ratio of 
flow depth to pipe diameter had little impact on normalized scour depth, highlighting its relative unimportance in comparison to other 

factors. In comparison to conventional regression equations and ANN-RBF, SVM demonstrated enhanced performance. Although 

regression approaches often oversimplify the scour process, the capacity of SVM to manage nonlinear correlations guarantees 

enhanced accuracy. The enhanced generalization capability of SVM renders it a more favorable option compared to ANN-RBF, which 

demonstrated elevated error rates. The results highlight the relevance of SVM in hydraulic engineering for predicting pipeline scour 

depth. By precisely modeling intricate interactions among factors, SVM offers a resilient prediction framework, reducing reliance on 

empirical equations that may be inadequate under certain situations. 

 

 

Table 3: Comparison of models for dimensional set performance of the SVM and ANN-RBF 

Models for 

Dimensional 
set 

             R2 RMSE MAE δ 

Training Validation Training Validation Training Validation Training  Validation 

SVM 0.866 0.741 0.0895 0.0957 1.279 1.426 5.78 10.45 

ANN-RBF 0.827 0.683 0.0978 0.0998 1.933 2.71 11.49 15.67 
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Table 4: Comparison of models for non-dimensional set Performance of the SVM and ANN-RBF 

Models for 

non-

dimensional 

set 

             R2 RMSE MAE δ 

Training Validation Training Validation Training Validation Training  Validation 

SVM 0.96 0.89 0.029 0.046 0.279 0.320 3.7 9.9 

ANN-RBF 0.87 0.73 0.008 0.073 0.083 0.071 11.45 15.67 

 

IV. CONCLUSION 

The use of Support Vector Machines (SVM) for forecasting pipeline scour depth signifies a notable development in hydraulic 

engineering. This research revealed that SVM surpasses ANN-RBF and conventional regression approaches, especially in managing 

non-dimensional characteristics essential to scour operations. The results indicated that particle mean diameter and the Shields 

parameter were the most significant parameters, but flow discharge and normalized flow depth had no influence. The SVM model's 
exceptional generalization power, shown by its outstanding performance metrics (RMSE = 0.046 and MAE = 0.32%), highlights its 

resilience and dependability. This research establishes a new standard for estimating pipeline scour depth, presenting a strong 

alternative to traditional empirical equations and neural network models. Future research may concentrate on augmenting the model 

by integrating further field data, investigating alternative machine learning techniques, and tackling real-world difficulties such as 

sediment heterogeneity and fluctuating flow conditions. The incorporation of these elements will enhance the practical applicability of 

predictive models in hydraulic engineering contexts. 
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