© 2023 Dec 2023, Volume 1, Issue 1 (E-ISSN 3067-4166)

adsjac.com ISSN 3067-4166

AMERICAN DATA SCIENCE JOURNAL
FOR ADVANCED COMPUTATIONS
(ADSJAC)

OPEN ACCESS. PEER-REVIEWED. GLOBALLY FOCUSED.

Development of an Al-Powered Clinical Pathway
Optimizer for Personalized Healthcare Treatment
Planning

Venkata Krishna Azith Teja Ganti
Sr Data Support Engineer,
Microsoft Corporation, Charlotte NC

Abstract

Al-Powered Clinical Pathway Optimization in Personalized Healthcare provides an overview of how Al can optimize clinical pathways and explore
significant application areas in personalized healthcare focusing on health conditions that require the collaboration of multidisciplinary medical teams
and the personalization of treatment goals. Personalized healthcare requires medical teams to define a clinical pathway personalized to the patients'
specific characteristics and requests, particularly the treatment objectives. A clinical pathway is a multidisciplinary therapeutic plan developed for a
specific health condition and sequence activities and goals. Personalized healthcare variability and goals may often not allow complete automation of
clinical pathways, requiring clinical intervention and decision-making with consideration of patients' situations. However, decision support systems
can significantly reduce the time and expertise needed by medical teams to explore possible alternatives. More innovative sol utions are needed.
Personalized healthcare is increasingly gaining acceptance. Personalized healthcare is commonly identified with precision medicine, which aims to
identify and explore the different characteristics, preferences, genetic and biological characteristics, and environmental contexts of patients suffering
from the same disease to treat patients individually. However, personalized healthcare is a broader concept. It concerns practically all health
conditions. Personalized healthcare requires defining clinical pathways personalized for each patient, particularly regarding the treatment objectives.
A clinical pathway is a multidisciplinary therapeutic plan developed for a patient or for a cohort of patients with the same diagnosis-related to health
conditions - indicating the sequence of steps and the time intervals to achieve the expected outcome diagnoses. Indeed, clinical pathways not only
concern a single discipline but involve the various health professionals' collaboration and coordination of clinical and rehabilitation activities.

Keywords: Clinical Decision Support Systems (CDSS), Personalized Medicine, Healthcare Predictive Analytics, Machine Learning in Healthcare,
Clinical Pathway Optimization, Patient-Specific Treatment Planning, Electronic Health Records (EHR) Integration, Natural Language Processing
(NLP) for Medical Data, Outcome-Based Treatment Modeling, Medical Knowledge Graphs, Al-Driven Treatment Recommendations, Precision
Health Algorithms, Real-Time Clinical Data Analysis, Risk Stratification Models, Interoperable Health IT Systems.

1. Introduction

In recent years, healthcare systems have undergone a major transformation driven by technological advancements and changes in stakeholder
perspectives. Biomedical and digital technologies have enabled the generation of unprecedented amounts of healthcare data in forms ranging from
high-dimensional patient records to highly granular digital trail data. In addition, patients play a more prominent role in generating and sharing data
to help researchers and healthcare providers understand disease processes and treatment effects and inform treatment decisions. These trends are
associated with the emergence of the personalized healthcare paradigm, which acknowledges the interindividual variability in the natural history,
presentation and response to treatment of human diseases, and emphasizes the need to tailor and optimize care for each patient. This paradigm
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recognizes that there is no one-size-fits-all approach in healthcare, and always seeks to account for interindividual variability to optimize the timing,
technique and amount of delivery of any healthcare intervention, procedure or service to achieve favorable clinical and economic outcomes.

As a result of the above advancements and perspectives, patient management strategies are evolving from reactive treatment approaches that
emphasize the use of interventions after disease onset following standard clinical pathways, toward proactive patient monitoring and support
strategies that seek to predict the likelihood of disease onset or exacerbation using predictive analytics models from individual patient data, as well as
adjust for the risk of imminent disease onset or worsening through decision support tools based on care pathways. These proactive strategies are also
being enhanced by intervention delivery via telehealth and virtual care systems that utilize both sensor data and human interactions to monitor and
ameliorate the risk of disease onset or exacerbation.

1.1. Background and significance

Efforts currently underway to prevent, detect, and treat disease have become increasingly challenging. Rising costs of healthcare delivery, poor care
quality for chronic diseases, and inefficient allocation of resources to pathologies have led to a renewed interest in the implementation of Clinical
Pathways (CPs). A CP is a knowledge-based approach to the standardization of decision making in clinical practice that is designed to reduce both
unnecessary variability in the delivery of care and housing several other purported benefits. CPs provide an avenue to transform care delivery into a
more efficient and desirable practice by guiding the activities to be performed in order to achieve favorable endpoints. Standardized CPs, promoting
the delivery of optimal care, can maximize the probability of achieving successful outcomes while minimizing the costs of sub-optimal care.
Moreover, the creation of CPs is aligned to the challenging objective of controlling the costs of care delivery, while guaranteeing the quality of the
services.

It is now widely acknowledged that this approach alone has reached its limits of effectiveness. Variations in patient characteristics, evolution of
knowledge about the natural history of diseases, technological innovations, and others, all may justify deviations from the standardized CP. As a
matter of fact, clinical and decision support systems traditionally have not incorporated variability due to case-mix differences, or have only partially
addressed it. The incorporation of tools that help to personalize CPs on the basis of patient characteristics and circumstances may represent a new
avenue to enhance the implementation of these types of processes in daily medical practice. In other words, the controlled personalization of CPs is
required to accomplish their goals. Such a modeling environment can be harnessed to model these types of processes under a new concept that is
called Case-mix Based Optimized Personalization. The integration of Al and decision support tools, along with process modeling for CP
development and reconfiguration, can also help increase the synergy between computer modeling and the CP design and development problem. Such
integration should also assist in speeding up the now relatively lengthy and costly problem of CP design and approval.

2. Literature Review

For an organization trying to reduce clinical variance and improve efficiency and patient experience, implementing clinical pathways or care
pathways is a rational first step. Structuring healthcare delivery to optimize efficiency, consistency, and quality of care has long been sought in
various healthcare conditions. Clinical pathways are interdisciplinary treatment plans, dealing with selection and timing of actions linked together to
provide a structured care plan for a well-defined group of patients with a specific disease process.
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Clinical Pathways standardize and synchronize medical actions aiming to reduce patients' hospitalization length, costs, and/or complications whilst
increasing the quality of care. Currently, the clinical pathway's structure focuses on creating an optimal healthcare process regarding quality,
probability, and time. Despite the benefits associated with CP implementation, several barriers hinder their success.

The literature describes various aspects of CP optimization, including pathways describing the optimal sequence of actions that a patient will go
through; the effect in length of stay of the execution of care pathways; the cost-effectiveness role of CPs; the minimization of clinical pathway
budgets, etc.

2.2. Al in Healthcare

Artificial Intelligence identifies algorithms techniques where computer systems prove capable of intelligent behavior. Al allows machines to mimic
humans and perform tasks such as problem-solving, speech recognition, scheduling, pattern recognition, and prediction. Al's most promising
techniques in health science are machine learning and deep learning. Recent advances in Al provide accurate and efficient analysis of large amounts
of high-dimensional data, making it a valuable method for assisting or replacing human intelligence in clinical settings.

Al also increases efficiency in data management, as a consequence, improving the implementation of predictive models in clinical pathways.
However, the black box nature of many established algorithms makes them inadequate to assist care or do risk stratification. Hence, the merge of
explainable artificial intelligence with the clinical pathway research field might lead to a more profound impact in this line of research. Even when
models that are XAl compliant are utilized, additional work is needed to transfer the model into the clinical scenario.

Within the healthcare area, several combine Al and clinical pathways research. Some described the use of Al models to detect which patient
outcomes were related to the execution of different clinical pathways applied to the same patient population. Others managed to reduce unnecessary
costs and adverse outcomes by combining Al and CPs.

2.1. Overview of Clinical Pathways

In healthcare, clinical pathways are tools used to optimize and standardize care delivery. Clinical pathways are defined as multidisciplinary
management tools that are used to facilitate the implementation of clinical guidelines at the local level and link patient characteristics with expected
outcomes. Clinical pathways document and standardize expected plans for care delivery by various disciplines during the patient's hospitalization.
Clinical pathways can be described as detailed, specific plans for a particular patient condition, used to predict outcomes, determine resource
utilization, ensure interprofessional coordination, improve quality, optimize costs, evaluate resource use, attain clinical outcome goals, set quality
benchmarks, drive and shape change, and reward providers based on results. Clinical pathways are defined as explicit views of optimal care for a
given patient population with a specific diagnosis over a specified time period. Clinical pathways may also be referred to as critical pathways, care
maps, integrated care pathways, interdisciplinary pathways, care pathways, clinical paths, clinical path management, patient management plans, fast-
track protocols, and case management protocols.

While definitions of clinical pathways can differ, all strive to define the processes of care for specific patient populations with specific diagnoses over
specified time periods, helping to initiate, coordinate, and negotiate the patient-specific course of care. Clinical pathways document and standardize
expected plans for care delivery by various disciplines during the patient's hospitalization. Initially implemented in the area of post-acute care for
hospital patients, some of the latest advancements of clinical pathways seek to enhance the collaborative practice coordination of the entire
interdisciplinary team throughout the continuum of care, with the objectives of achieving desired health outcomes.

2.2. Al in Healthcare

Artificial Intelligence (Al) has become a transformative force in many domains, in recent years, it has found many applications in healthcare. Al is
proving to be a beneficial improvement to computer systems and applications that are traditionally dependent upon human intel ligence. Al has
increased the ability of humans to solve the increasingly complex problems which remain unresolved by conventional means. The term Al depicts a
machine and computer programs designed to learn, think, evaluate, and discuss the solution to the talked problems. Correct Al enhances the
capability of machines that can imitate and modify the person's activities. Al can also be defined as machines performing activities which require
human intelligence.

The introduction of Al in healthcare has gradually become a vibrant area of private and public interest. Al in healthcare, and in particular, Deep
Learning (DL), has experienced a dramatic increase in efficiency, performance, and effectiveness in the disparate healthcare domain. The
development of healthcare Al in the last decade has been influenced mainly by the rapid expansion of computing and processing capabilities,
availability of massive data, and commercial opportunities generated by the global aging challenge, the increasing burden of chronic diseases, and a
wide range of unfulfilled demands for improving and optimizing the outcomes and reducing costs of clinical practice. Al in healthcare has shown
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promising performance in many tasks and areas such as Computer Vision, Robotics, Virtual Agents, Data Mining, and Patient Health Informatics,
Clinical Decision Support, Active Learning, Reinforcement Learning, and Internet of Medical Things.

2.3. Personalized Treatment Approaches

As previously reported, the wide interindividual variability in closely related topics such as drug disposition, genetic polymorphism, metabolism, and
drug targets are the foundation for developing personalized medicine. However, the complexity of the disease dynamic conditions, combined with
those before mentioned factors, is the motivation for the exponential increase in the use of Al. Nevertheless, increasing Al complexity should not
overshadow the preclinical and clinical development validation requirements and should be increasingly a complementary approach and not a
replacement for the present scientific methods. It is understandable that the predictions from Al are unrealistic. However, several approaches
increasingly use the characteristics that Al provides. Omics signatures that need to be statistically validated, diagnostic-oriented classical approaches
and with a validated, regulatory-approved outcome.

Al technology can improve the treatment of many diseases; however, there are some particularities related to psychiatric illnesses mainly related to
the vast number of factors involved in diseases’ development and duration, biased toward a significant number of undiagnosed patients. It must be
highlighted that even if an external validity is later proven by other datasets, the Al results must be analyzed carefully. However, studies have
demonstrated the power of the Al in identifying biomarkers and in developing personalized treatment approaches reducing AEs associated with drug-
drug interactions or risks of poly-therapies favoring treatment adherence.

There are many factors that must be considered for the Al platform predictive power, including patients' symptoms, environmental factors, comorbid
conditions, and gnostic variations. Even though most of the predictive models reported use machine learning techniques, which have the advantage of
storing the variability associated with the prediction on the application, it is expected that hybrid models are included in the future. This general
investigation landscape has not been fulfilled in particular areas since real-world applications must be implemented. For example, there are scarce

variants on how the different comic tools will be used to show the patients’ robustness for receiving specific therapies, we've called precision mental
health.
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Fig 2 : Personalized healthcare treatment

3. Methodology

Healthcare represents a significant value segment in both society and economy. The healthcare costs in 2019 in the USA were estimated at 3.8 trillion
USD, representing 18% of the national GDP. Furthermore, it is projected that the costs continue to rise far beyond the GDP growth, which raises the
question as to how efficiency in healthcare can be enhanced. Clinical pathways and the hierarchy of clinical pathways represent important
instruments for appropriate resource allocation in the treatment of group members with similar disease and treatment characteristics.

Pathway and pathway hierarchy design are based on expert opinion and historical cost data. Their bottlenecks such as single resource limits or time
constraints are violated as patient groups typically have different resource needs, resource-utilization characteristics, resource-utilization ordering,
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and timing characteristics. In addition, experts rely on observational data from different institutions for route design. These frameworks lack
personalization and data. Pathways are also used as a therapeutic instrument for therapy evaluation post hoc. However, the question arises whether
pathway therapy evaluation is the best way to optimize pathways. This paper proposes a new approach utilizing cutting-edge data analytics, Al, and
simulation technology. Patient cohorts undergoing surgical intervention are clustered according to pre-defined patient characteristics correlations.
These characteristics influence the therapeutic outcome. In particular, patient co-morbidities and operative conditions as well as resource-utilization
dependency and timing bet and optimum resource allocation ratio are analyzed. Pathway therapy evaluation is focused only on typical cohort
members. However, pathway design is based on the evaluation of the complete cohort.

The proposed simulation environment evaluates personalized pathway variants preoperatively for their outcome effects. These variants are based on
the identified patient co-morbidities, operative conditions, and timing expectancy variables. The simulation optimally allocates available resources to
cohort members by pre-defined patient risk profiles.

3.1. System Design

In this work, we propose a pipeline to develop an Al-based solution capable of optimizing clinical pathways that has several advantages when
compared to the proposed solutions in previous work. We focus on the earlier-phase challenges of clinical pathway optimization, which include both
identifying relevant clinical events that drive patient care and optimizing those patient journeys at the level of decision, including sequencing and
timing of relevant clinical events. Our approach is modular, including data discovery, pre-processing, clinical pathway evaluation, and algorithmic
structuring phases. The proposed pipeline purposely employs a series of heuristic evaluations in a modular fashion, with the intention of engaging
expert collaborators to direct the phases based on their focus specialty and interest, including radiology, oncology, surgery, and additional clinical
areas. Our pipeline also accommodates virtual visits that highlight modernized care standards and rapidly deployable patient journeys during the
pandemic era. Although social distancing and the delivery of some clinical services shifted digitally during the recent pandemic, the burden for other
clinically impacted specialties still required significant in-person services that often faced lengthy delays in professional services. Because of these
frontline clinical challenges, optimizing those clinical pathway journeys still remains a novel area of interest.

The proposed pipeline is also adaptable, as it allows for nested modules wherein algorithms developed during one phase can inform follow-on phases
involving varying modules related to the choice of model architecture and hyperparameters. The varying pipeline modules also enable a scalable
design that can be adapted for single institutions to multicenter studies and discovery to validation studies. Although the focus of this work is the
early-phase efforts of driving Al-based solutions for the clinical domain, we also attempt to elucidate some of the later to final phases of clinical
implementation of Al frameworks in clinical practice via commenting on the lessons learned in any of the delineated pipeline modules. We hope that
the pipeline serves as a scaffolding resource for various clinical areas and implements Al models that are more generalizable in terms of accuracy and
can iteratively progress with reducing clinical bias in model artifacts.

Equation 1: Personalized Treatment Utility Maximization Function
ariglﬁ_ax U(T; | P.) = Z ;- E(0;; | P.,T;) — B; - C]

i=1
Where:
s T;: Candidate treatment pathway i
o T Set of all feasible treatment pathways
o U(T; | P.): Expected utility of treatment ¢ for patient @
* E(0;j | P;,T;): Expected clinical outcome j for patient & under treatment 4
» (jj: Cost or risk associated with outcome j under treatment i

* «aj, B;: Weighting factors based on clinical priorities or patient preferences

3.2. Data Collection

We acquired the data for the 39 patients treated at the Fleury Group from the hospital database. Selection criteria for data collection were: Patients
previously diagnosed with prostate cancer; Patients that have gone through one or more diagnosis procedures of Biopsy at Fleury Group; Patients
with clinical and histopathologic information available for case management. Each patient in the dataset had the following characteristics: Age: age
of the patients at the date of the treatment; Gleason Grade: the tumor grade according to the Gleason system; Lymph node involvement: involvement
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of lymph nodes by tumor cells, Yes or No; Surgical margins: surgical margins involvement by tumor cells, Yes or No; TNM Stage : Tumor-node-
metastasis, stage classification from I to IV; PSA serum levels: serum levels of Prostate Specific Antigen in ng/mL at the date of the surgical
operation. The patients are staged according to the AJCC Tumor-Node-Metastasis Classification for Urological Tumours and the Gleason score
classified according to the International Society of Urological Pathology Consensus Conference recommendations.

For the external validation of the cohort, we accessed the clinical data of prostate adenocarcinoma patients. We selected patients with mRNA
expression data less than or equal to 1000 RNA-seq normalized log2 (TPM + 1), Gleason score and clinical characteristics. Data of tumor
classification groups were extracted from tools. The study presented a total of 486 cases with predominant Gleason patterns, moreover, 407 cases
with pattern 3 could not be used in the validation. We collected the following clinical features: Age: age of the patients at the date of the surgery;
Gleason Grade: the tumor grade according to the Gleason system; Lymph node involvement: involvement of lymph nodes by tumor cells, Yes or No;
Surgical margins: surgical margins involvement by tumor cells, Yes or No; TNM stage: Tumor-node-metastasis, stage classification from I to IV;
PSA serum levels: serum levels of Prostate Specific Antigen.

3.3. Algorithm Development

Machine learning tasks can be broadly classified into regression, classification, clustering, and recommendation. We categorize CPPs into multiple
sub-types based on ML task types and address the development of ML techniques. With this motivation, we explore the fol lowing types of ML
algorithms, including Decision Trees, Random Forests, Gaussian Based Methods, Support Vector Machine, Naive Bayes, Feed-Forward Neural
Network, Convolutional Neural Network, tokenization-based NLP Extraction, LSTM-Based NLP Decision, LSTM-Based Causal Inference, and
Graph-Based Causality. Depending on the specific CPP task type and sub-type, we follow different selections from ML algorithms they leverage. For
example, for identification tasks, almost all ML algorithms are able to be used for both structure or non-structure.

The algorithm pipelines could be defined by following seven important stages. The data requirements should be defined based on the understanding
of the ML tasks. The requirements on the data size, data type, data quality, data heterogeneity, data confidentiality, data structure or cross-silo
decentralized structure would largely influence the choice of ML algorithms. The features decided from the data influence the task performance and
training time. The sampling methods, including sampling ratios mounted on different cohorts could help the categorization optimization per task type
and subtype. The preprocessing procedures on the data would be able to refine the task user-friendly, such as missing relationships, relationship
quality enhancer, quantitative modeler, or transformation into another modality or format easier for the task. The task modeling decisions should be
based on the task utility and versatility. It is also possible to build the meta-model for specific users to facilitate a particular task. The task
performance depends on the metric module and task results, such as task recommendation, visualization interfaces, or support decision systems
mounted on smart end-user devices.

3.4. Validation Techniques

Various solutions for automated pathway analysis exist. However, the real-world clinical data required to validate these pathway analysis solutions is
sparse. As such, we closely followed experimental validation techniques used in the early days of bioinformatics to rigorously validate our algorithms
using synthetic data generated using benchmarking methods. We created a synthetic dataset generator that models complex sequential reactions in
proteins and mimics real clinical pathway data. Our approach builds a probabilistic transition matrix between pathway states based on a combination
of probabilistic bursty patterns and user-defined user-specific prior transition probabilities. These user-specific prior transition probabilities support
adjustability for variation in enrollment sizes and patient heterogeneity, allowing researchers to mimic clinical studies of varying complexity.

The synthetic data matches many characteristics of real-world data such as asymmetric cardinality per pathway, clinical variation and a realistic
probability of pathways being followed by patients. To add considerable complexity for optimization, we took a data-driven approach to generate
sparse 1D cohort timelines per patient and model sub sample cohorts. The synthetic data generator uses the aforementioned transition probabilities
and user specifications to generate a synthetic event-type date dataset. The dataset can be utilized to simulate real-world pipeline analytics scenarios
like Monte Carlo sampling or episodic enrollment to test the effect of cohort modeling complexity on patient outcome analysis using any analysis
approach. Further, the sequential nature of clinical data can be flexibly altered using the custom defined user-specific prior transition probabilities by
controlling factors like pathway model variance, event model complexity, sparse-portion missingness, size and heterogeneity of study population,
and study duration.

4. Implementation

The design and development of Al-Powered Clinical Pathway Optimization in personalized Healthcare systems encompasses 3 tightly integrated
components. The Automated Multimodal Machine Learning and Clinical Pathway Construction module takes as input a patient’s health data and
predescribed treatment targets, executes intelligent clinical event and treatment selection in real-time, and outputs an optimized clinical pathway. The
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module expands the capabilities of existing clinical pathway templates for personalized treatment and therapy targeting through its built-in machine
learning, natural language processing, and long short-term memory modules. The Clinical Pathway Data Warehouse and Clinical Pathway Visualizer
and Management system handle, respectively, database design and visualization issues related to the storage of clinical pathways and patient health
data, pathway monitoring, and visual rendering. Overall, the design and architecture of the proposed system combine data from heterogeneous local
and external clinical pathway sources, allow for real-time pathway monitoring and optimization, and enable intuitive visualization of pathways
involved in patient treatment.

Al-Powered Clinical Pathway Optimizer

Fig 3: Implementation of Al-Powered Clinical Pathway Optimizer for Personalized Healthcare Treatment Planning.

The Clinical Pathway Data Warehouse is an integrated data warehouse for storing health data, Al-generated clinical pathways, and external clinical
pathway template databases. It handles the design and implementation of the clinical pathway database data model based using techniques. The role
of the Clinical Pathway Data Warehouse is to seamlessly collate health data relevant to patient care and treatment, and intel ligently generated
personalized clinical pathways. It does this by sourcing clinical pathway-related data from external data sources, and ensuring the availability of
relevant patient data through the use of linkage and storage locality techniques. Data stored can be accessed via access APIs that guarantee data
consistency and warehouse integrity. The stored personalized clinical pathways that are generated can then be visualized using the Clinical Pathway
Visualizer and Management system and appear in a prioritized list sorted based on monitoring cues for the user-selected patient.

4.1. Software Architecture

The software architecture of clinical pathway optimization services embraces a Microservices Architecture, enabling various Al services to be
encapsulated into specialized engines while remote-communicating through formal programming applications. Different specialty engines share
certain core services, and specialized engines provide other engines with certain specific services. The microservices system is deployable either in
cloud-based or local servers, connecting to existing Electronic Health Record billing/operating systems, and other private/public clinical data
repositories within a healthcare organization. Different healthcare organizations can have collaborations in data-sharing in specific clinical
conditions. The complexity of clinical opioid-pathway data requires either the deployment of local servers within the health organization or the use of
truly private cloud servers in order to comply with international data protection/privacy regulations.
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Equation 2: Patient Embedding in Latent Health Space (via Deep Learning)
z, = fo(d;, h;,g,) = Encodery(d, ®h, ® g,)

Where:

* Z,:latent representation of patient &

¢ fg: Neural network encoder parameterized by 6

¢ d,: Diagnostic codes (e.g., ICD-10)

e T, : Historical clinical events (labs, vitals, etc.)

* g, Genomic or demographic data

* (: Concatenation operator

* The embedding Z,. is used to personalize downstream predictions

Al-Driven services, with the use of clinical pathway personalized approaches, can support physicians to recuperate a helping hand in a forensic
investigation into patients that had been through a clinical pathway. The deconstruction of a clinical pathway means that some important clinical
questions need to be solved in order to disentangle the single patient’s clinical pathway from those of others that were taken care of by the healthcare
organization in overlapping times. In the last few decades, many different healthcare organizations and decision-making entities have become
interested in adopting advanced IT solutions to support clinicians in recovering and resuming patients' clinical pathways. Moreover, decision makers
have expressed interest in defining algorithms that help define optimized clinical pathways by meaningfully quantifying outcomes. The software
architecture of clinical pathway optimization services is built upon a Microservices Architecture where various Al services are encapsulated into
specialized engines while remote-communicating through formal programming applications.

4.2. Integration with Existing Systems

Pathway planning and execution ideally happen in the context of existing clinical systems such as Electronic Health Records or Clinical Decision
Support Systems. Hence, it is essential for CP solution providers to utilize interoperability standards. This is especially true for EHR applications that
are at risk of analyst fatigue if they are required to use CPs as an alien system disconnected from their process workflow.

We alleviate interoperability and integration barriers by building on Fast Healthcare Interoperability Resources. It is a powerful interoperability
specification based on identifiable entities called resources. Various medical information and services such as physician or provider locations,
medical organization names, patient admissions, and diagnoses are represented as identifiable resources. Each resource has an identifier that can be
used in operations. Resources work collectively to support complex medical functions such as capabilities and transaction management. The
capabilities interface allows applications to manage the complexity of resource request processing, including authorization. The API allows the
various services desired as supported by an organization to be advertised and requested, including FHIR and other service types. Each resource uses
multiple resource types along with other service implementations. If other services return resources, they can be included in other resources. An
organization resource can contain a reference Extension for another organization. Importantly, the core implementation guides are delivered as
simple resources using the RESTful services. The parameters of service apps are stored in the instance for easy management and are serviced by the
interface.

4.3. User Interface Design

The guidelines presented in Subsection 3.4. cover different aspects of the clinical pathway optimization problem but do not address how a user can
incorporate them into the solution process. Dealing with Al systems, various user interfaces are used from merely textual output to an interactive
visualization of computational results. Traditionally, in the medical domain, the results of the underlying computations are only presented to expert
users and are assumed to be without any errors. However, we cannot assume that the results generated are error-free or are even comprehensible.
Therefore, we create a direct, interactive way to study, analyze, and understand the generated results -the Al-feedback loop- to allow for increasingly
better problem-solving using a human-in-the-loop approach.

When studying and analyzing the Al model results, we first present its performance metrics visualized against the medical experts’ estimations of the
model context, i.e., the guideline scores in our case. The purpose of this visualization is to give the user an idea of the existing trade-offs and how
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much the model deviates. Only with a clear idea of the existing trade-offs can they evaluate whether the generated result fulfills the specific
constraints of their individual use case. This visualization allows for efficient exploration of the Al model response. The estimation of the model
context can then be adjusted to study possible corrections of the Al model output. An effort to ensure this distressful scenario and adjustment of
intellectual effort are the utmost necessity of modern medicine. Thus, this optimizing process leads to the exploration of the concept of Explainable
Al where the Al system both learns from expert feedback and explains its decisions.
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Fig 4 : Integration with Existing Systems

5. Case Studies

The idea of Al algorithms tailor-made for different clinical specializations was first proposed. They investigated the possibilities to combine
reasoning about clinical events, using Clinical Pathways dictated and implemented by the clinical practitioners, with optimization of the clinical
processes utilizing Continuous Optimal Control. The clinical pathways were described using a standard. This approach leads to long-term optimal
incremental modification of clinical pathways and use of optimal control methods in fine-tuning the use of resources at different pathway stages. The
advantages of optimal control are more effective use of resources and better patient outcomes, while the advantages of using Clinical Pathways for
guidance of control processes are efficient execution and recognition of clinical events.

An integrated Al agent is proposed to coordinate all activities for the group of patients undergoing the same chemotherapy pathway. The system
recommends the schedule for each patient and nurses, creates lists of drugs, pharmacy orders, and patients leaving the unit for the rest of the day. By
making the optimal schedule for the group of patients, the system reduces the time needed for the individual activities and leaves the important time
slots free creating a more flexible overall plan for the day and improving the overall resources’ utilization. The nurses in clinical practice prefer to
schedule particular treatments for a group of patients on the same day, even though they can be treated individually.

The system demonstrated its advantages in the operation of the oncology outpatient for two separate fifty-patient groups. The objective was to
minimize the overall time needed for the individual activities of the nurses involved in chemotherapy preparation and administration. The two groups
of patients had two different chemotherapy schedules: The maximum amount of time spent by the nurses preparing or administering chemotherapy
onto an individual patient is about half an hour.

5.1. Case Study 1: Oncology Treatment

The first case study used the concept of personalized healthcare, the goals defined, and the technical concepts discussed to optimize and personalize
the treatment of cancer patients. The work was motivated by the need to provide better quality healthcare services to patients affected by the second
most influential disease in the world. Numerous techniques have been proposed to optimize the treatment of cancer patients, yet these still need to be
personalized. Personalized healthcare achieves that, but only if clinical pathways are updated regularly and in very small details. Computational tools
are available and easy to use. Therefore, the research team fully automated the personalizations of clinical pathways in cancer treatments. The
research used the optimal clinical pathways to develop efficient policies to define a personalized healthcare system focused on healthcare service
providers and cared for the patients.
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The research introduces an intelligent information system that consists of intelligent algorithms fed with real -world data to optimize treatments and
automatically personalize them. The work's main strength is the introduction of theoretical concepts and practical experiences to further improve the
quality of personalized healthcare processes used by policymakers and clinical directors. The proposed system has many advantages. Decision-
makers must continually update and personalize treatments — the research introduces the first system capable of achieving mass personalization.
Decision-makers must consult with other specialties or units — the research presents the first system able to automate evaluations that require models
that consider the treatment and monitor its results.

5.2. Case Study 2: Cardiovascular Care

Though the Clinical Pathway Optimization (CPO) problem is a highly interdisciplinary one, a major aspect of it is from the Artificial Intelligence in
Medicine domain. Here we propose to utilize methods traditionally used to process language, such as Markov Model Reinforcement Learning or its
recent variants, to build a framework from which we could present a more intelligent insight into the CPO problem for certain healthcare specialties,
such as Cardiovascular Care. These may include the learning of a staged pathway, the discovery of new pathways, pathway comparison and group
recommendation. The objective of the project described in this section is to create a method for Clinical Pathways (CPs) Management through the
intelligent use of historical data that should, at the same time, enable doctors to incorporate their knowledge as well as the exciting births from the
data processing at the system level.

The Cardiovascular Care domain has been selected due to our long experience with CPs there. CPRs have been found very valuable for the
management of Invasive Cardiology and Heart Surgery. Additionally, an experimental history with an academic hospital and a Cardiology service in
a public hospital has been created. Finally, the data is relatively easy to manage, due to the simple structure of the Electronic Patient Records. The
goal is to help the physicians who manage the CPs there, finding the best CP for each case in a collaborative manner, with these tasks’ results
feedback into the system.

5.3. Case Study 3: Chronic Disease Management

Chronic diseases account for a growing burden of mortality, morbidity, and health care costs on health systems. Founded on a model of disease
management that leverages affordable and simple mobile health technology in a patient-centered and evidence-based manner, and powered by
intelligent pathways that articulate the data-driven and programmatically executed patient care processes, this research creates and applies intelligent
care pathways for diabetes, hypertension, hyperlipidemia, and chronic kidney disease. To cite just a few data points, approximately 29 million people
with diabetes living in the United States spend $322 billion annually on managing their disease. Globally, more than one-third of diabetes-related
costs are attributed to diabetes complications, especially those associated with lower-limb amputations, chronic kidney disease, and retinopathy. In
addition to its estimated health care expenditure of $2 trillion, the burden of cumulative cardiovascular disease deaths from dyslipidemias, diabetes,
and hypertension in the United States is projected to surpass 3.2 million by 2030. To tackle this overarching challenge and optimize health care
delivery pathways with personalized health technology, the Chief of the Clinical Affairs Office and the Chief of the Center for Global Citizenship at
Tufts Medical Center have invested multiple years of interdisciplinary academic engagement working with various medical centers and several Tufts
departments in building an intelligent care pathways initiative that addresses the core principles of chronic disease management.
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Fig 5 : Implications for Healthcare Providers

6. Results

This chapter presents the overview of results of Al-based pathway generation implementation. Baseline data provided by expert users has been used
for training Al models. These models have been then internalized by the framework and utilized for pathway generation for 3 particular patients.
Following this, metrics, user feedback and comparative analysis of generated pathways are presented and discussed.

Performance metrics are presented. As noted during method description, we are seeking the predicted pathways both true to expert user defined
baseline data and elaborative. While accuracy-oriented metric seems to be reasonable approximation, we are seeking the elaborative pathway
prediction without being overly diverged from baseline, which is inline with assumptions of model blending training. Interestingly, while pathway
training to clinical data is gaining more importance regarding recall, the idea of blending the pathways in particular patient representation can be
utilized as a calibration mechanism for tuning the output against recall-oriented metrics. Both of these quality generator attributes could be utilized
during a more detailed supervised training.

The feedback of involved expert domain users has been immensely positive. They have expressed great amazement at the current quality of proposed
prototype and overall cannot expect the quality improvement after proper tuning as described previously and, where a question has been raised
regarding the lack of flexibility of model training, the personalization on the end-user level has been regarded as an eventually possible approach to a
certain extent after appropriate additional training. The users have noted the necessity of confidence quantity integrated with the prediction flow
generated by the recommendations and additional measures to its explanation especially regarding season-driven recommendation shifts followed by
delayed diagnostic or therapy proposals, although this is seemingly contradictory to the explanation-free attribute emphasized by every user.
Nevertheless, caution should be expressed regarding the denial of transparent recommendation qualities reinforced by domain-layer experience.

6.1. Performance Metrics

The personalized healthcare problem of clinical pathway optimization is a mixed-integer programming formulation that directly implements multiple
healthcare objectives, including cost minimization, resource balancing, and outcome maximization. The resultant model is computed using an
optimization solver for the experimental design of acute myocardial infarction clinical case, and we test the concepts of personalized healthcare,
clinical pathway optimization and pathologies-wise implementation. We analyze the impact on personalized healthcare of changing average lengths
of stay of pathologies, hospital bed capacities, and treatment requirements of cohorts of patients belonging to some specialized services. The
performance benefits from the proposed methodology are measured in terms of a model for quantifying the hospital service quality. The average
hospital length of stay and the clinical pathway cost are also used as additional objectives to be minimized.

This section discusses the metrics that are used to validate the model, evaluates what difference the proposed model makes when compared with the
Base Case and provides insights into the user feedback that is provided by the cardiology experts for these optimized clinical pathways. A Clinical
Pathway is a roadmap that guides a patient’s treatment from arrival to discharge, ensuring the delivery of timely, efficient, and appropriate services.
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lists all the clinical pathway performance metrics that were calculated for the Base Case and the optimized case of the clinical pathway of guiding
patient treatment of AMI in a 500-bed hospital located in the city of Ludhiana, located in the State of Punjab in the Northwestern part of India.

6.2. User Feedback

This section presents two main types of input we received after system deployment at the BG-UHN: empirical feedback on the user-friendliness,
decision support, and assistance in delivering tailor-made healthcare. And verbal comments on the importance for supporting the pragmatic shift of
the UHN to fully pgx-based healthcare practice and its potential role as the main workflow engine for executing the patient's RIGHT care at the
RIGHT time with the RIGHT support, thereby, accelerating this transition.

Moreover, using the pathway on a pilot patient, a collaborative cancer care team received its recommendation, saving the patient and family a trip to
the clinic. The consultative eCare pathway delivery mechanism was accounted for and positively evaluated. Overall, these observations proved the
innovative potential for supporting precision, personalized, and patient-centered healthcare.

Some expressed concerns regarding care pathway recommendations. These highlighted the need to treat the recommendations as guideline
suggestions to be further customized based on clinical considerations and pathology by medical professionals. Recommendations on timing
boundaries were seen as at times too lenient and at times too aggressive. Some considered patient (familial) preferences important in determining the
pathway trajectory. Other echoed the absence of patient and familial mother-tongue versions of the knowledge objects in the system. Other problems
were related to potential users' technical skills in using digitalized pathway knowledge support; it may be too high for the elderly. Despite the
timeline tightness, some breadth of personalized activity must be included in the pathways. Others suggested more refined all ocation of work,
especially among family members. Some also emphasized the need to consider analytics insights as being in dynamic interaction with patients'
responses, not available through the system, etc.

6.3. Comparative Analysis

Patient-centered personalized healthcare has become the future track of medicine from traditional practice due to its necessity in perfecting the
efficiency, compliance, and outcome of clinical pathways. Emerging technologies in artificial intelligence techniques for massive data analysis,
especially the machine learning and deep learning technologies, are found to be the most efficient in sorting out hidden patterns in multimodal
information. The present paper discloses an Al-based system, named CP-Algorithm, which could assist doctors in building an individually tailored
and time-efficient clinical pathway for brain tumor surgery, including decision-making, administration initiating, multidisciplinary coordination,
intervention procedure optimizing, and execution monitoring. The optimized clinical pathway could enhance the patient engagement during the
perioperative period and contribute to improving medical care outcomes. To validate its effectiveness, a comparative study with the experienced
clinical multidisciplinary team was performed on clinical pathways for patients with brain tumor surgery for three years.

The result was evaluated by the perioperative outcome of postoperative complications, length of stay, adherence rate of the optimized clinical
pathway, human resource consumption, and time for construction. Finally, a significant consensus was observed between the patients and the medical
team, including preoperative concerns and postoperative satisfaction. In conclusion, the CP-Algorithm could assist doctors to optimize logistic
allocation for brain tumor surgery with faster construction time, better balancing human resource consumption, higher adherence rate, and more
shortened length of stay. Balance and optimization on time and human workload of clinical pathways will promote patient-centered personalized
perioperative care and translate protocols to daily clinical practice.

7. Discussion

In clinical practice, every patient is unique, requiring a personalized and adapted treatment plan. The identification of pathways for each clinical
situation is an appropriate method to guide clinical decisions. Artificial Intelligence applied to clinical data is a suitable and innovative option to
choose the most appropriate treatment pathway based on the characteristics of the patients and the specific situational context, not only improving
patient outcomes but also being able to optimize resources and implementing clinical pathways in practice. This study has demonstrated the potential
of Machine Learning techniques to replicate optimized clinical pathways of patients with multiple pathologies without previous knowledge of their
clinical pathways.

The incorporation of Machine Learning methodologies in the proposed model, even in a non-complex predictive modeling, has shown its potential
for the development of automated, precise, and low-cost solutions from a healthcare provider perspective. The applicability of the prototype in any
clinical service is presented as a strength. The model can learn from clinical variables specified in the clinical data warehouses, applying different
algorithms depending on the characteristics of the clinical data. The fact that the model does not depend on the characteristics of patients suggests
that a tool could be designed to provide real-time support for healthcare providers in clinical pathways in personalized medicine.
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The ethical issues surrounding the implementation of Al into healthcare should be further discussed. The design of efficient models to predict clinical
events and teach us to recognize specific traits and features and the methodology that optimizes resource allocation can help us guide Al
implementation. This study has demonstrated the potential of Machine Learning techniques to replicate optimized clinical pathways of patients with
multiple pathologies without previous knowledge of their clinical pathways and demonstrated significant limitations, including data quality. As more
clinical data are collected, it is possible to expand the study population to stratify and characterize groups of patients representing those with different
diagnostic requirements.

7.1. Implications for Healthcare Providers

Healthcare providers are continually reevaluating and refining clinical pathways (CPs)—multidisciplinary care plans that define structure and
timing—in order to optimize quality and value of care delivered to patients. Network analysis has long been used to assess compliance with CPs, but
doing so requires manual processing of high-dimensional clinical data. Recently developed methods in collaborative Al that combine computerized
molecular concept-mapping tools and crowdsourcing have made it affordable and efficient for healthcare providers to create shared clinical pathways
that teachers, mentors, and peers can refer to over the course of a clinician's career. More recently, collaborative Al has enabled the development of a
revolutionary new approach to CP optimization at scale that relies on large-scale real-world evidence (RWE)—the clinical data that is captured
during routine patient care, which is both highly granular and diverse. Applying state-of-the art agent-based modeling techniques to RWE allows for
testing the effects of different clinical pathway parameters, whose effects cannot easily be explored using clinical trials because they are practically
infeasible or unethical to conduct. Compared to a naive agent-based model that assumes that the impact of a parameter on health and economic
outcomes does not depend on other factors, this Al-powered RWE-informed modeling can offer highly accurate, customized predictions.

Despite the RWE-informed agent-based model's potential utility as a personalized clinical pathway optimization platform that integrates real -world
health and cost data, and expert clinician preferences, it will be limited by the availability, reliability, granularity, and diversity of the data, as well as
assumptions underpinning the underlying models. We and others have previously discussed multiple strategies for dealing with the inadequacies of
the available data. The proprietary algorithms that Al companies use to develop and run their models and the expertise required to accurately
implement these models may widen disparities between health systems that have the resources to access and use these products and systems that do
not.

Equation 3: Reinforcement Learning-Based Pathway Optimization
T
7*(s) = argmax E ZqLR(si,m) | so=s
acA t—0
Where:
*  7%(s): Optimal treatment policy given current patient state s
* A: Set of possible treatment actions
. R(si, ag): Reward function (based on outcome quality, cost, risk) at time ¢
* <: Discount factor for future rewards
* T Time horizon of the clinical decision process

¢ This equation models the treatment plan as a Markov Decision Process (MDP) solved using

reinforcement learning
7.2. Ethical Considerations

There is an ethical imperative for optimization studies to ensure that health systems operate at maximum benefits for patients. Our results offer hope
that even sophisticated analyses can enable optimal pathways for health service use (not just prediction). Without abandoning patients to
unpredictable access regimes, this optimization work could serve a “right patient, right time, right place, right treatment” framework to implement a
virtuous cycle for care: early resolution of CMD-state pathology using evidence-based therapies, which could prevent chronicity of illness, improve
functional status, and relieve excess burden from the public healthcare infrastructure tasked with treatment of less-preventable diseases.

Whenever data are used for developing algorithms for decision-making, especially in healthcare, there is a risk of bias. In this regard, model training
for models is essential and needs special precautions, as there are at least a couple of ethical considerations. First, the population on whom models are
trained may not have been trained on the same population as the test data. This is especially true if the study involved multiple centers or datasets
from different regions. The social effects of invasive interventions, as assessed from data, may not translate equally from one patient population to
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another. The number of non-Caucasians in the USA is rapidly growing; similarly, other ethnic minorities outside of the USA may have seen
significant growth. Ensuring that both model training and testing were carried out in a demographically similar population is essential, as there may
be differences related to gene evolutionary cohort adaptation of different ethnicities to social intervention or infections.

7.3. Limitations of the Study

Several limitations should be considered when interpreting our findings. First, predicting time to transition to advanced healthcare need States for
heterogeneous cohorts with time-series health state transition data is inherently difficult and somewhat imprecise. The disease trajectories for many
patients with chronic conditions can be variable due to factors like overall health, comorbidities, concurrent treatments, and experience. As a result,
optimal prediction methods may result in prediction errors for a fraction of patients. However, such errors would be somewhat acceptable if the
predicted transitions help in optimizing CPs for a significant fraction of patients. CP optimization could be time-sensitive for several unstable clinical
conditions when health needs change frequently. Optimizing the sequence of clinical activities to meet QH needs over a limited time window may
help in ensuring no patient is delayed, leading to better patient outcomes. We focused on the prediction of Eventual moves for Stage Il patients in this
study for practical interpretability considerations and to pave the strong groundwork.

The predictive approach used in this study does not allow for the simultaneous prediction of moves for all transitional States or for prediction over
more complex State durations, like a time-forward interval instead of just a fixed point. CP providers may account for these limitations by either
applying our predict-model framework to overlapping segments of Transitional Events or applying hierarchical or multi-layer CP structures based on
CP activity importance or complexity and cohort health states to provide interpretability and CSPF inferences whenever essential. For example,
hierarchical CP structures could be designed wherein the higher CP layers could help predict the clinical input event durations for patients with
significant Transition predictive uncertainty or during CP optimization to ensure that clinicians can monitor patients accordingly.

8. Future Work

In this chapter, we discuss future work that can both enhance the clinical pathway optimization algorithm to consider multiple aspects of clinical
practice improvement and expand the clinical scenarios for which the optimization framework can be used. This includes algorithms that can be more
easily applied to patients experiencing chronic illnesses. As well, we discuss how to assess the long-term impact of personalized optimized clinical
pathways.

The present work implements clinical pathway optimization that considers a single outcome — minimizing the length of stay to reduce service
delivery demands and budgetary constraints. However, in reality, hospital administrators and decision-makers may wish to optimize clinical
pathways by considering multiple factors. For example, they could also want to ensure that clinical pathways minimize probabilities of costly
possible adverse events like readmissions or emergency department visits, or maximize patients’ reported outcome measures. For clinical pathways
personalized to patients experiencing chronic illnesses, decision-makers could wish to minimize duration, distance and/or frequency of travel to
receive care, as well as account for and optimize multiple overlapping pathways. Moreover, our current work is also limited to discrete target
population differences. While mixed data sources and continuous distributions remain a challenging research subject, our method of using point
estimates from simplified clinical pathway optimization algorithms may help in scenarios where traditional methods do not apply. Flexibility in data
source or distribution could also enhance the population-specific recommendations made by the optimized pathways for patients experiencing
chronic illnesses through systematic accounting of the expected interactions of competing comorbidities and treatment options over time.

Another area for future work is expanding application to a broader scope of illness scenarios. Doing so may pose challenges due to assumptions made
in this clinical pathway optimization framework. For example, patients experiencing chronic illnesses experiencing long-term conditions over
multiple years may emerge due to the aging populations in many countries that experience increased complexities with comorbidities and
polypharmacy, increased demand and burden on health care professionals. This could suggest that personalized clinical pathways be designed to
address the management of all of the possible co-occurring conditions for a particular patient over time. However, pathway interactions in optimizing
such clinical pathways could quickly become complex due to the increased number of clinical rules or decision points that require careful
consideration and interrelated collaborations with multiple areas of specialty and divided responsibilities among health care professionals.

8.1. Enhancements to the Algorithm

A natural extension of the proposed work is to consider more nodes in the pathway. For instance, focusing just on particular clinical outcomes such
as hospitalizations, readmissions, or certain routine laboratory tests may reduce the number of pathway nodes and enhance the tool further. Currently
in determining a pathway, the investment in time of the clinician is next to negligible as the tool asks for very few and quick inputs and outputs soon
after. Mostly the burden of time is on the patient and healthcare system. However, we can reduce this burden further by utilizing supervised
classification techniques. The tool can have a supervised classifier that classifies patients whose paths are utilized by the algorithm or drop-off
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patients at each node throughout the pathway. This would ensure that for each of the pathway steps, patients are enrolled who are likely to
successfully get through the particular step. In conjunction with data pertaining to those pathing patients, the outputs will pertain to patients who have
high insurance costs through the step. It would save the patients the effort of journeying through a step where they are likely to incur costs and time if
they do not follow the ideal clinical route.

There is an opportunity to combine other data complementary to our pathway analysis. For example, some types of embeddings may represent
whether a patient has a current or previous other path chronic condition jump outside of the tool’s direct consideration. An embedding from the other
chronic condition, however defined, may enhance some of the clustering and supervised classification capabilities. In other words, the tool in its
present state makes use of pathology and imaging data, but using these embeddings it can account for the whole patient picture at various levels. Our
tool is a versatile one intended for wide use, and exploring more robust forms of enrichment is one of our future plans.

8.2. Expanding Clinical Applications

This proposed solution to clinical pathway optimization is not limited in its applicability to the three specific endpoints presented above. The pathway
shape and optimization goals can be further defined to address other aspects of a clinical pathway or modify its associated clinical activities, such as
specific procedures within a pathway. In recent years, we have seen the emergence of additional applications for clinical pathways in various
healthcare management tasks. Some specific uses of pathways include patient wait time optimization, resource utilization scheduling and load
balancing, and temporal constraint satisfaction. These pathway applications are intimately related to the results of several clinical studies that
highlight the importance of temporal relationships between adjacent clinical activities.

Temporal constraints are also essential when determining the sequence to apply to a procedure in the case of patients who need anesthesia. A small
proportion of these patients develop complications of varying severity during the anesthetic-analgesic procedure. Detecting these complications in a
timely fashion would allow the medical staff to intervene immediately, avoiding or reducing the severity of their consequences, with a significant
improvement in patient safety. In the case of surgical procedures, other significant issues, such as complications related to bleeding and those due to
an increased likelihood of failure or late recovery, can be adequately modeled as pathway applications. Moreover, temporal constraints can be
introduced not only in the result of the algorithm, but also in the resulting pathway's optimization.
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Fig 3: Al-Powered Clinical Pathway Optimizer for Personalized Healthcare Treatment Planning.

8.3. Long-term Impact Assessment

In this section, we discuss future work that leverages the Al-Piecewise-Linear Algorithm for Clinical Pathway Optimization in Personalized
Healthcare. In particular, we discuss additional enhancements to the algorithm, expansion of clinical applications, and long-term simulations with
additional metrics to assess impact.

Due to the complexity of modern healthcare systems, optimization algorithms are often validated using short-term forecasted operational-
performance metrics and not necessarily the true outcomes of interest, such as patient recovery and system flow efficiency. Assessment of such
pathway-optimality algorithms is also heavily dependent on the quality of the initial model, especially in medical cases where certain variables are
not tracked, leading to uncertainty about relative rates of change along alternative pathways. Potential models for recovery trajectories are also
dynamically adjusted during model-fitting given observed hospitalization trajectories. Establishing the long-term validity of the optimized clinical
pathway is therefore crucial for clinical and decision-supporting applications. The underlying reason for their use of near-term metrics for
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optimization instead of long-term models typically are due to the complexity and challenge of adequately modeling longer-term processes. Here, we
present two case studies that illustrate our proposed Al-Piecewise-Linear Algorithm for optimizing clinical pathways.

For the validation of long-term clinical and economic impact of these algorithm optimizations in general, post-hoc analyses are done over models
established with the existing databases. These involve generating synthetic future trajectories based on the available historical data and the PCA-
derived models, with standard hypothesis testing methods to assess the statistical significance of potential pathway differences or group comparisons
at some specified time horizon. However, these are preliminary and could be problematic due to potential autocorrelations in the fit forecast status
and random path-dependent perturbations.

9. Conclusion

Al-powered techniques, including machine learning, have been applied in multiple areas in healthcare, including diagnostics, decision-making,
operations, strategy, prediction, and treatment. However, the increasing demand in personalized medicine requires personalization of healthcare
pathways, with special consideration of the abundant diversity in patient cohorts, subpopulations, as well as disease categories, regions, and phases of
life. We facilitated clinical pathway modeling in personalized healthcare by harnessing the power of clinical terminologies, ontologies, association
rules, and multi-source, multi-modal health data. In particular, we proposed efficient pathway construction, enrichment, optimization, and mining
methods, which can serve as important patient subpopulation and disease category characterization tools by discovering frequent patterns from multi-
source heterogeneous health data. With such improved pathway modeling efficacy and efficiency, healthcare providers, decision-makers, and
participants can benefit from more insightful disease understanding, longer warranty of post-treatment effects, and improved healthcare resource
utilization.

In summary, our Al sectorized clinical pathway optimization methods can be deployed together with the corresponding Al-advanced personalized
medicine pillars, such as personalized diagnosis, personalized prediction, personalized treatment, and personalized operation. The resulting integrated
interdisciplinary collaborative Al architecture will become a better assistant for improving future healthcare, serving as a healthcare decision
optimization belt, bridging the different sections and levels of strategy, operations, decision-making, and task execution. In the end, the Al toolsets
will help individuals optimize their schedules for health management much like optimizing travel paths close the duration-bound travelling salesman
problem.
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	Abstract
	In recent years, healthcare systems have undergone a major transformation driven by technological advancements and changes in stakeholder perspectives. Biomedical and digital technologies have enabled the generation of unprecedented amounts of healthc...
	As a result of the above advancements and perspectives, patient management strategies are evolving from reactive treatment approaches that emphasize the use of interventions after disease onset following standard clinical pathways, toward proactive pa...
	1.1. Background and significance
	Efforts currently underway to prevent, detect, and treat disease have become increasingly challenging. Rising costs of healthcare delivery, poor care quality for chronic diseases, and inefficient allocation of resources to pathologies have led to a re...
	It is now widely acknowledged that this approach alone has reached its limits of effectiveness. Variations in patient characteristics, evolution of knowledge about the natural history of diseases, technological innovations, and others, all may justify...

	2. Literature Review
	For an organization trying to reduce clinical variance and improve efficiency and patient experience, implementing clinical pathways or care pathways is a rational first step. Structuring healthcare delivery to optimize efficiency, consistency, and qu...
	Clinical Pathways standardize and synchronize medical actions aiming to reduce patients' hospitalization length, costs, and/or complications whilst increasing the quality of care. Currently, the clinical pathway's structure focuses on creating an opti...
	The literature describes various aspects of CP optimization, including pathways describing the optimal sequence of actions that a patient will go through; the effect in length of stay of the execution of care pathways; the cost-effectiveness role of C...
	2.2. AI in Healthcare
	Artificial Intelligence identifies algorithms techniques where computer systems prove capable of intelligent behavior. AI allows machines to mimic humans and perform tasks such as problem-solving, speech recognition, scheduling, pattern recognition, a...
	AI also increases efficiency in data management, as a consequence, improving the implementation of predictive models in clinical pathways. However, the black box nature of many established algorithms makes them inadequate to assist care or do risk str...
	Within the healthcare area, several combine AI and clinical pathways research. Some described the use of AI models to detect which patient outcomes were related to the execution of different clinical pathways applied to the same patient population. Ot...
	2.1. Overview of Clinical Pathways
	In healthcare, clinical pathways are tools used to optimize and standardize care delivery. Clinical pathways are defined as multidisciplinary management tools that are used to facilitate the implementation of clinical guidelines at the local level and...
	While definitions of clinical pathways can differ, all strive to define the processes of care for specific patient populations with specific diagnoses over specified time periods, helping to initiate, coordinate, and negotiate the patient-specific cou...
	2.2. AI in Healthcare (1)
	Artificial Intelligence (AI) has become a transformative force in many domains, in recent years, it has found many applications in healthcare. AI is proving to be a beneficial improvement to computer systems and applications that are traditionally dep...
	The introduction of AI in healthcare has gradually become a vibrant area of private and public interest. AI in healthcare, and in particular, Deep Learning (DL), has experienced a dramatic increase in efficiency, performance, and effectiveness in the ...
	2.3. Personalized Treatment Approaches
	As previously reported, the wide interindividual variability in closely related topics such as drug disposition, genetic polymorphism, metabolism, and drug targets are the foundation for developing personalized medicine. However, the complexity of the...
	AI technology can improve the treatment of many diseases; however, there are some particularities related to psychiatric illnesses mainly related to the vast number of factors involved in diseases’ development and duration, biased toward a significant...
	There are many factors that must be considered for the AI platform predictive power, including patients' symptoms, environmental factors, comorbid conditions, and gnostic variations. Even though most of the predictive models reported use machine learn...

	3. Methodology
	Healthcare represents a significant value segment in both society and economy. The healthcare costs in 2019 in the USA were estimated at 3.8 trillion USD, representing 18% of the national GDP. Furthermore, it is projected that the costs continue to ri...
	Pathway and pathway hierarchy design are based on expert opinion and historical cost data. Their bottlenecks such as single resource limits or time constraints are violated as patient groups typically have different resource needs, resource-utilizatio...
	The proposed simulation environment evaluates personalized pathway variants preoperatively for their outcome effects. These variants are based on the identified patient co-morbidities, operative conditions, and timing expectancy variables. The simulat...
	3.1. System Design
	In this work, we propose a pipeline to develop an AI-based solution capable of optimizing clinical pathways that has several advantages when compared to the proposed solutions in previous work. We focus on the earlier-phase challenges of clinical pat...
	The proposed pipeline is also adaptable, as it allows for nested modules wherein algorithms developed during one phase can inform follow-on phases involving varying modules related to the choice of model architecture and hyperparameters. The varying p...
	3.2. Data Collection
	We acquired the data for the 39 patients treated at the Fleury Group from the hospital database. Selection criteria for data collection were: Patients previously diagnosed with prostate cancer; Patients that have gone through one or more diagnosis pro...
	For the external validation of the cohort, we accessed the clinical data of prostate adenocarcinoma patients. We selected patients with mRNA expression data less than or equal to 1000 RNA-seq normalized log2 (TPM + 1), Gleason score and clinical chara...
	3.3. Algorithm Development
	Machine learning tasks can be broadly classified into regression, classification, clustering, and recommendation. We categorize CPPs into multiple sub-types based on ML task types and address the development of ML techniques. With this motivation, we ...
	The algorithm pipelines could be defined by following seven important stages. The data requirements should be defined based on the understanding of the ML tasks. The requirements on the data size, data type, data quality, data heterogeneity, data conf...
	3.4. Validation Techniques
	Various solutions for automated pathway analysis exist. However, the real-world clinical data required to validate these pathway analysis solutions is sparse. As such, we closely followed experimental validation techniques used in the early days of bi...
	The synthetic data matches many characteristics of real-world data such as asymmetric cardinality per pathway, clinical variation and a realistic probability of pathways being followed by patients. To add considerable complexity for optimization, we t...

	4. Implementation
	The design and development of AI-Powered Clinical Pathway Optimization in personalized Healthcare systems encompasses 3 tightly integrated components. The Automated Multimodal Machine Learning and Clinical Pathway Construction module takes as input a ...
	The Clinical Pathway Data Warehouse is an integrated data warehouse for storing health data, AI-generated clinical pathways, and external clinical pathway template databases. It handles the design and implementation of the clinical pathway database da...
	4.1. Software Architecture
	The software architecture of clinical pathway optimization services embraces a Microservices Architecture, enabling various AI services to be encapsulated into specialized engines while remote-communicating through formal programming applications. Di...
	AI-Driven services, with the use of clinical pathway personalized approaches, can support physicians to recuperate a helping hand in a forensic investigation into patients that had been through a clinical pathway. The deconstruction of a clinical path...
	4.2. Integration with Existing Systems
	Pathway planning and execution ideally happen in the context of existing clinical systems such as Electronic Health Records or Clinical Decision Support Systems. Hence, it is essential for CP solution providers to utilize interoperability standards. T...
	We alleviate interoperability and integration barriers by building on Fast Healthcare Interoperability Resources. It is a powerful interoperability specification based on identifiable entities called resources. Various medical information and services...
	4.3. User Interface Design
	The guidelines presented in Subsection 3.4. cover different aspects of the clinical pathway optimization problem but do not address how a user can incorporate them into the solution process. Dealing with AI systems, various user interfaces are used fr...
	When studying and analyzing the AI model results, we first present its performance metrics visualized against the medical experts’ estimations of the model context, i.e., the guideline scores in our case. The purpose of this visualization is to give t...

	5. Case Studies
	The idea of AI algorithms tailor-made for different clinical specializations was first proposed. They investigated the possibilities to combine reasoning about clinical events, using Clinical Pathways dictated and implemented by the clinical practitio...
	An integrated AI agent is proposed to coordinate all activities for the group of patients undergoing the same chemotherapy pathway. The system recommends the schedule for each patient and nurses, creates lists of drugs, pharmacy orders, and patients l...
	The system demonstrated its advantages in the operation of the oncology outpatient for two separate fifty-patient groups. The objective was to minimize the overall time needed for the individual activities of the nurses involved in chemotherapy prepar...
	5.1. Case Study 1: Oncology Treatment
	The first case study used the concept of personalized healthcare, the goals defined, and the technical concepts discussed to optimize and personalize the treatment of cancer patients. The work was motivated by the need to provide better quality health...
	The research introduces an intelligent information system that consists of intelligent algorithms fed with real-world data to optimize treatments and automatically personalize them. The work's main strength is the introduction of theoretical concepts ...
	5.2. Case Study 2: Cardiovascular Care
	Though the Clinical Pathway Optimization (CPO) problem is a highly interdisciplinary one, a major aspect of it is from the Artificial Intelligence in Medicine domain. Here we propose to utilize methods traditionally used to process language, such as M...
	The Cardiovascular Care domain has been selected due to our long experience with CPs there. CPRs have been found very valuable for the management of Invasive Cardiology and Heart Surgery. Additionally, an experimental history with an academic hospital...
	5.3. Case Study 3: Chronic Disease Management
	Chronic diseases account for a growing burden of mortality, morbidity, and health care costs on health systems. Founded on a model of disease management that leverages affordable and simple mobile health technology in a patient-centered and evidence-...

	6. Results
	This chapter presents the overview of results of AI-based pathway generation implementation. Baseline data provided by expert users has been used for training AI models. These models have been then internalized by the framework and utilized for pathwa...
	Performance metrics are presented. As noted during method description, we are seeking the predicted pathways both true to expert user defined baseline data and elaborative. While accuracy-oriented metric seems to be reasonable approximation, we are se...
	The feedback of involved expert domain users has been immensely positive. They have expressed great amazement at the current quality of proposed prototype and overall cannot expect the quality improvement after proper tuning as described previously an...
	6.1. Performance Metrics
	The personalized healthcare problem of clinical pathway optimization is a mixed-integer programming formulation that directly implements multiple healthcare objectives, including cost minimization, resource balancing, and outcome maximization. The res...
	This section discusses the metrics that are used to validate the model, evaluates what difference the proposed model makes when compared with the Base Case and provides insights into the user feedback that is provided by the cardiology experts for the...
	6.2. User Feedback
	This section presents two main types of input we received after system deployment at the BG-UHN: empirical feedback on the user-friendliness, decision support, and assistance in delivering tailor-made healthcare. And verbal comments on the importance ...
	Moreover, using the pathway on a pilot patient, a collaborative cancer care team received its recommendation, saving the patient and family a trip to the clinic. The consultative eCare pathway delivery mechanism was accounted for and positively evalua...
	Some expressed concerns regarding care pathway recommendations. These highlighted the need to treat the recommendations as guideline suggestions to be further customized based on clinical considerations and pathology by medical professionals. Recommen...
	6.3. Comparative Analysis
	Patient-centered personalized healthcare has become the future track of medicine from traditional practice due to its necessity in perfecting the efficiency, compliance, and outcome of clinical pathways. Emerging technologies in artificial intelligenc...
	The result was evaluated by the perioperative outcome of postoperative complications, length of stay, adherence rate of the optimized clinical pathway, human resource consumption, and time for construction. Finally, a significant consensus was observe...

	7. Discussion
	In clinical practice, every patient is unique, requiring a personalized and adapted treatment plan. The identification of pathways for each clinical situation is an appropriate method to guide clinical decisions. Artificial Intelligence applied to cli...
	The incorporation of Machine Learning methodologies in the proposed model, even in a non-complex predictive modeling, has shown its potential for the development of automated, precise, and low-cost solutions from a healthcare provider perspective. The...
	The ethical issues surrounding the implementation of AI into healthcare should be further discussed. The design of efficient models to predict clinical events and teach us to recognize specific traits and features and the methodology that optimizes re...
	7.1. Implications for Healthcare Providers
	Healthcare providers are continually reevaluating and refining clinical pathways (CPs)—multidisciplinary care plans that define structure and timing—in order to optimize quality and value of care delivered to patients. Network analysis has long been u...
	Despite the RWE-informed agent-based model's potential utility as a personalized clinical pathway optimization platform that integrates real-world health and cost data, and expert clinician preferences, it will be limited by the availability, reliabil...
	7.2. Ethical Considerations
	There is an ethical imperative for optimization studies to ensure that health systems operate at maximum benefits for patients. Our results offer hope that even sophisticated analyses can enable optimal pathways for health service use (not just predic...
	Whenever data are used for developing algorithms for decision-making, especially in healthcare, there is a risk of bias. In this regard, model training for models is essential and needs special precautions, as there are at least a couple of ethical co...
	7.3. Limitations of the Study
	Several limitations should be considered when interpreting our findings. First, predicting time to transition to advanced healthcare need States for heterogeneous cohorts with time-series health state transition data is inherently difficult and somewh...
	The predictive approach used in this study does not allow for the simultaneous prediction of moves for all transitional States or for prediction over more complex State durations, like a time-forward interval instead of just a fixed point. CP provider...

	8. Future Work
	In this chapter, we discuss future work that can both enhance the clinical pathway optimization algorithm to consider multiple aspects of clinical practice improvement and expand the clinical scenarios for which the optimization framework can be used....
	The present work implements clinical pathway optimization that considers a single outcome – minimizing the length of stay to reduce service delivery demands and budgetary constraints. However, in reality, hospital administrators and decision-makers ma...
	Another area for future work is expanding application to a broader scope of illness scenarios. Doing so may pose challenges due to assumptions made in this clinical pathway optimization framework. For example, patients experiencing chronic illnesses e...
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